Conic Sections Question 183

Question: If the straight line $ x\cos \alpha +y\sin \alpha =p $ be a tangent to the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ , then

[Karnataka CET 1999]

Options:

A) $ a^{2}{{\cos }^{2}}\alpha +b^{2}{{\sin }^{2}}\alpha =p^{2} $

B) $ a^{2}{{\cos }^{2}}\alpha -b^{2}{{\sin }^{2}}\alpha =p^{2} $

C) $ a^{2}{{\sin }^{2}}\alpha +b^{2}{{\cos }^{2}}\alpha =p^{2} $

D) $ a^{2}{{\sin }^{2}}\alpha -b^{2}{{\cos }^{2}}\alpha =p^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ x\cos \alpha +y\sin \alpha =p\Rightarrow y=-\cot \alpha .x+p\text{cosec }\alpha $

It is tangent to the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $

Therefore, $ p^{2}cose{c^{2}}\alpha =a^{2}{{\cot }^{2}}\alpha -b^{2} $

$ \Rightarrow a^{2}{{\cos }^{2}}\alpha -b^{2}{{\sin }^{2}}\alpha =p^{2} $ .