Conic Sections Question 184

Question: If the normal at the point $ P(\theta ) $ to the ellipse $ \frac{x^{2}}{14}+\frac{y^{2}}{5}=1 $ intersects it again at the point $ Q(2\theta ) $ , then $ \cos \theta $ is equal to

Options:

A) $ \frac{2}{3} $

B) $ -\frac{2}{3} $

C) $ \frac{3}{2} $

D) $ -\frac{3}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

The normal at $ P(a\cos \theta ,b\sin \theta ) $ is $ ax\sec \theta -bycosec\theta =a^{2}-b^{2} $ , where $ a^{2}=14,b^{2}=5 $

It meets the curve again at $ Q(2\theta ) $ i.e., $ (a\cos 2\theta ,b\sin 2\theta ) $ .
$ \therefore \frac{a}{\cos \theta }a\cos 2\theta -\frac{b}{\sin \theta }(b\sin 2\theta )=a^{2}-b^{2} $

$ \Rightarrow \frac{14}{\cos \theta }\cos 2\theta -\frac{5}{\sin \theta }(\sin 2\theta )=14-5 $

$ \Rightarrow 18{{\cos }^{2}}\theta -9\cos \theta -14=0 $

$ \Rightarrow (6\cos \theta -7)(3\cos \theta +2)=0\Rightarrow \cos \theta =-\frac{2}{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें