Conic Sections Question 192

Question: The normal meet the parabola $ y^{2}=4ax $ at that point where the abissiae of the point is equal to the ordinate of the point is

[DCE 2005]

Options:

A) $ (6a,\ -9a) $

B) $ (-9a,\ 6a) $

C) $ (-6a,\ 9a) $

D) $ (9a,\ -6a) $

Show Answer

Answer:

Correct Answer: D

Solution:

If normal drawn to point $ (at_1^{2},2at_1) $ of a parabola $ y^{2}=4ax $ meets at point $ (at_2^{2},2at_2) $ of same parabola then, $ t_2=-t_1-2/t_1 $ In question $ x=y $ (given) because abscissa and ordinate are equal. $ y^{2}=4ax $

therefore $ y^{2}=4ay $

[we use relation $ x=y $ ]

therefore $ y^{2}=4ay=0 $

therefore $ y(y-4a)=0 $

therefore $ y=0 $ or $ y=4a $

therefore point $ (x=0,y=0) $ and $ (x=4a,y=4a) $

$ 2at_1=4a $

therefore $ t_1=\frac{4a}{2a}=2 $ ; $ t_2=-2-\frac{2}{2}=-2-1=-3 $

$ (at_2^{2},2at_2)=[a\times {{(-3)}^{2}},2a(-3))=(9a,-6a) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें