Conic Sections Question 194

Question: If the circle $ x^{2}+y^{2}=a^{2} $ intersects the hyperbola $ xy=c^{2} $ in four points $ P(x_1,y_1),Q(x_2,y_2),R(x_3,y_3),S(x_4,y_4) $ Then

Options:

A) $ x_1+x_2+x_3+x_4=0 $

B) $ y_1+y_2+y_3+y_4=2 $

C) $ x_1x_2x_3x_4=2c^{4} $

D) $ y_1y_2y_3y_4=2c^{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ (x _{i},y _{i}),i=1,2,3,4 $ lies on $ xy=c^{2}\Rightarrow y _{i}=\frac{c^{2}}{x _{i}} $ Now the point $ (x _{i},y _{i}) $ lies on $ x^{2}+y^{2}=a^{2}\Rightarrow x^2 _{i}+\frac{c^{4}}{x _{i}}=a^{2} $

$ \Rightarrow x^4 _{i}-a^{2}x^2 _{i}+c^{4}=0 $ Its roots are $ x_1,x_2,x_3,x_4\therefore $ $ x_1+x_2+x_3+x_4=0 $ $ x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4=a^{2} $ $ x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=0 $ $ x_1x_2x_3x_4=c^{4} $ Clearly [c] is not correct Now $ y_1y_2y_3y_4=\frac{c^{2}}{x_1}.\frac{c^{2}}{x_2}.\frac{c^{2}}{x_3}.\frac{c^{2}}{x_4}=c^{4} $ and $ y_1+y_2+y_3+y_4=\frac{c^{2}(\Sigma x_1x_2x_3)}{x_1x_2x_3x_4}=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें