Conic Sections Question 199

Question: The equation of a circle which passes through the point (2, 0) and whose centre is the limit of the point of intersection of the lines $ 3x+5y=1 $ and $ (2+c)x+5c^{2}y=1 $ as c tends to 1, is

Options:

A) $ 25(x^{2}+y^{2})+20x+2y-60=0 $

B) $ 25(x^{2}+y^{2})-20x+2y+60=0 $

C) $ 25(x^{2}+y^{2})-20x+2y-60=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let $ A\equiv (2,0) $ Given lines are $ 3x+5y=1 $

  • (1) and $ (2+c)x+5c^{2}y=1 $

  • (2) Multiplying equation (1) by $ c^{2} $ and subtracting (2) form it, we get $ (3c^{2}-c-2)x=c^{2}-1 $ or $ x=\frac{c^{2}-1}{3c^{2}-c-2} $ Now, $ \underset{c\to 1}{\mathop{\lim }}x=\underset{c\to 1}{\mathop{\lim }}\frac{(c-1)(c+1)}{(c-1)(3c+2)}=\underset{c\to 1}{\mathop{\lim }}\frac{c+1}{3c+2}=\frac{2}{5} $

$ \therefore $ X coordinate of centre $ =\frac{2}{5} $ From (1), when $ x=\frac{2}{5},y=-\frac{1}{25} $

Hence the centre of the circle is $ ( \frac{2}{5},-\frac{1}{25} ) $ Also, the circle passes through the point $ A(2,0) $

$ \therefore $ radius of the circle $ =\sqrt{{{( 2-\frac{2}{5} )}^{2}}+{{( 0+\frac{1}{25} )}^{2}}} $ Thus, equation of the required circle is $ ={{( x-\frac{2}{5} )}^{2}}+{{( y+\frac{1}{25} )}^{2}}=\frac{64}{25}+\frac{1}{625} $ or $ 25(x^{2}+y^{2})-20x+2y-60=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें