Conic Sections Question 2

Question: The normal at the point $ (bt_1^{2},2bt_1) $ on a parabola meets the parabola again at the point $ (bt_2^{2},2bt_2) $ then

Options:

A) $ t_2=-t_1-\frac{2}{t_1} $

B) $ t_2=-t_1+\frac{2}{t_1} $

C) $ t_2=t_1-\frac{2}{t_1} $

D) $ t_2=t_1+\frac{2}{t_1} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given point on parabola is $ P(bt_1^{2},2bt_1) $ So consider parabola $ y^{2}=4bx $ Differentiating W.r.t.x, we get $ 2y\frac{dy}{dx}=4b $

$ \therefore \frac{dy}{dx}=\frac{2b}{y} $

$ \therefore $ slope of normal at point $ p=-\frac{2bt_1}{2b}=-t_1 $ . Also normal meets the curve again at point $ Q(bt^2_2,2bt_2) $ So slope of line $ PQ=\frac{2bt_2-2btl1}{bt^2_2-bt^2_1}=\frac{2}{t_1+t_2} $

$ \therefore -t_1=\frac{2}{t_1+t_2} $

$ \therefore t_2=-t_1-\frac{2}{t_1} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें