Conic Sections Question 200

Question: If the ellipse $ 9x^{2}+16y^{2}=144 $ intercepts the line $ 3x+4y=12, $ then what is the length of the chord so formed-

Options:

A) 5 units

B) 6 units

C) 8 units

D) 10 units

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Here, $ 9x^{2}+16y^{2}=144 $ And $ 3x+4y=12 $
$ \Rightarrow x=\frac{12-4y}{3} $ So, $ 9{{( \frac{12-4y}{3} )}^{2}}+16y^{2}=144 $

On solving we get,

$ y=0,3 $ For $ y=0;x=4 $ For $ y=3;x=0 $
$ \Rightarrow $ Length of chord $ =\sqrt{{{(0-3)}^{2}}+{{(4-0)}^{2}}}=\sqrt{9+16} $

$ =\sqrt{25}=5units $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें