Conic Sections Question 200

Question: If the ellipse $ 9x^{2}+16y^{2}=144 $ intercepts the line $ 3x+4y=12, $ then what is the length of the chord so formed-

Options:

A) 5 units

B) 6 units

C) 8 units

D) 10 units

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Here, $ 9x^{2}+16y^{2}=144 $ And $ 3x+4y=12 $
$ \Rightarrow x=\frac{12-4y}{3} $ So, $ 9{{( \frac{12-4y}{3} )}^{2}}+16y^{2}=144 $

On solving we get,

$ y=0,3 $ For $ y=0;x=4 $ For $ y=3;x=0 $
$ \Rightarrow $ Length of chord $ =\sqrt{{{(0-3)}^{2}}+{{(4-0)}^{2}}}=\sqrt{9+16} $

$ =\sqrt{25}=5units $