Conic Sections Question 202

Question: If the pair of lines $ ax^{2}+2(a+b)xy+by^{2}=0 $ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then

Options:

A) $ 3a^{2}-10ab+3b^{2}=0 $

B) $ 3a^{2}-2ab+3b^{2}=0 $

C) $ 3a^{2}+10ab+3b^{2}=0 $

D) $ 3a^{2}+2ab+3b^{2}=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] As per question area of one sector = 3 times area of another sector

$ \Rightarrow $ Angle at centre by one sector $ =\frac{1}{3} \times $ angle at centre by another sector Let one angle be $ \theta $ then other $ =3\theta $ Clearly $ \theta +3\theta =180^\circ \Rightarrow \theta =45^\circ $

$ \therefore $ Angle between the diameters represented by the combined equation $ ax^{2}+2(a+b)xy+by^{2}=0 $ is $ 45^\circ $

$ \therefore $ Using $ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{a+b} $ we get $ \tan 45{}^\circ =\frac{2\sqrt{{{(a+b)}^{2}}-4ab}}{a+b} $

$ \Rightarrow 1=\frac{2\sqrt{a^{2}+b^{2}-ab}}{a+b} $

$ \Rightarrow {{(a+b)}^{2}}=a^{2}+2ab+b^{2}$

$ \Rightarrow a^{2}+b^{2}+2ab=(a+b)^{2}$

$ \Rightarrow 3a^{2}+3b^{2}+2ab=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें