Conic Sections Question 202

Question: If the pair of lines $ ax^{2}+2(a+b)xy+by^{2}=0 $ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then

Options:

A) $ 3a^{2}-10ab+3b^{2}=0 $

B) $ 3a^{2}-2ab+3b^{2}=0 $

C) $ 3a^{2}+10ab+3b^{2}=0 $

D) $ 3a^{2}+2ab+3b^{2}=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] As per question area of one sector = 3 area of another sector

$ \Rightarrow $ Angle at centre by one sector $ =3\times $ angle at centre by another sector Let one angle be $ \theta $ then other $ =3\theta $ Clearly $ \theta +3\theta =180\Rightarrow \theta =45{}^\circ $

$ \therefore $ Angle between the diameters represented by combined equation $ ax^{2}+2(a+b)xy+by^{2}=0 $ is $ 45{}^\circ $

$ \therefore $ Using $ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{a+b} $ we get $ \tan 45{}^\circ =\frac{2\sqrt{{{(a+b)}^{2}}-ab}}{a+b} $

$ \Rightarrow 1=\frac{2\sqrt{a^{2}+b^{2}+ab}}{a+b} $

$ \Rightarrow {{(a+b)}^{2}}=4(a^{2}+b^{2}+ab) $

$ \Rightarrow a^{2}+b^{2}+2ab=4a^{2}+4b^{2}+4ab $

$ \Rightarrow 3a^{2}+3b^{2}+2ab=0 $