Conic Sections Question 204
Question: If $ x=9 $ is the chord of contact of the hyperbola $ x^{2}-y^{2}=9 $ , then the equation of the corresponding pair of tangents is
Options:
A) $ 9x^{2}-8y^{2}+18x-9=0 $
B) $ 9x^{2}-8y^{2}-18x+9=0 $
C) $ 9x^{2}-8y^{2}-18x-9=0 $
D) $ 9x^{2}-8y^{2}+18x+9=0 $
Show Answer
Answer:
Correct Answer: B
Solution:
[b] The equation of tangent at a point  $ (x_1,y_1) $  on the hyperbola  $ x^{2}-y^{2}=c $  is given by  $ xx_1-yy_1=c $  Chord  $ x=9 $  meets  $ x^{2}-y^{2}=9 $  at  $ (9,6\sqrt{2}) $  and  $ (9,-6\sqrt{2}) $  at which tangents are  $ 9x-6\sqrt{2}y=9 $  and  $ 9x+6\sqrt{2}y=9 $  or  $ 3x-2\sqrt{2}y-3=0 $  and  $ 3x+2\sqrt{2}y-3=0 $
$ \therefore  $  Combined equation of tangents is  $ (3x-2\sqrt{2}y-3)(3x+2\sqrt{2}y-3)=0 $  or  $ 9x^{2}-8y^{2}-18x+9=0 $
 BETA
  BETA 
             
             
           
           
           
          