Conic Sections Question 206

Question: If OA and OB are the tangents form the origin to the circle $ x^{2}+y^{2}+2gx+2fy+c=0 $ and C is the centre of the circle, the area of the quadrilateral OACD is

Options:

A) $ \frac{1}{2}\sqrt{c(g^{2}+f^{2}-c)} $

B) $ \sqrt{c(g^{2}+f^{2}-c)} $

C) $ c\sqrt{g^{2}+f^{2}-c} $

D) $ \frac{\sqrt{g^{2}+f^{2}-c}}{c} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Area of quadrilateral $ =2[areaof\Delta OAC] $

$ =2.\frac{1}{2}OA.AC=\sqrt{S_1}.\sqrt{g^{2}+f^{2}-c} $ Point is $ (0,0)\Rightarrow S_1=c, $
$ \therefore $ Area $ =\sqrt{c(g^{2}+f^{2}-c)} $