Conic Sections Question 208

Question: The locus of mid point of that chord of parabola which subtends right angle on the vertex will be

[UPSEAT 1999]

Options:

A) $ y^{2}-2ax+8a^{2}=0 $

B) $ y^{2}=a(x-4a) $

C) $ y^{2}=4a(x-4a) $

D) $ y^{2}+3ax+4a^{2}=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Equation of parabola $ y^{2}=4ax $ ……(i) Equation of that chord of parabola whose mid point is $ (x_1,y_1) $ will be $ yy_1-2a(x+x_1)=y_1^{2}-4ax_1 $

or $ yy_1-2ax=y_1^{2}-2ax_1 $ or $ \frac{yy_1-2ax}{y_1^{2}-2ax_1}=1 $ …..(ii) Making equation (i) homogeneous by equation (ii), the equation of lines joining the vertex (0,0) of parabola to the point of intersection of chord (ii) and parabola (i) will be $ y^{2}=4ax\frac{yy_1-2ax}{y_1^{2}-2ax_1} $ or $ y^{2}(y_1^{2}-2ax_1)=4ax(yy_1-2ax) $

or $ 8a^{2}x^{2}-4ay_1xy+(y_1^{2}-2ax_1)y^{2}=0 $

If lines represented by it are mutually perpendicular, then coefficient of $ x^{2}+ $ coefficient of $ y^{2}=0 $

therefore, $ 8a^{2}+(y_1^{2}-2ax_1)=0 $ or $ y_1^{2}-2ax_1+8a^{2}=0 $ . Required locus of $ (x_1,y_1) $ is $ y^{2}-2ax+8a^{2}=0. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें