Conic Sections Question 210

Question: The point $ ([P+1],[P]) $ (where [x] is the greatest integer less than or equal to x), lying inside the region bounded by the circle $ x^{2}+y^{2}-2x-15=0 $ and $ x^{2}+y^{2}-2x-7=0, $ then

Options:

A) $ P\in [-1,0)\cup [0,1)\cup [1,2) $

B) $ P\in [-1,2)-{0,1} $

C) $ P\in (-1,2) $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Since the $ ([P+1],[P]) $ lies inside the circle $ x^{2}+y^{2}-2x-15=0 $

$ [But[x+n]=[x]+n,n\in N] $
$ \therefore {{[P+1]}^{2}}+{{[P]}^{2}}-2[P+1]-15<0 $

$ {{([P]+1)}^{2}}+{{[P]}^{2}}-2([P]+1)-15<0 $

$ 2{{[P]}^{2}}-16<0,{{[P]}^{2}}<8 $

From the second circle $ {{([P]+1)}^{2}}+{{[P]}^{2}}=-2([P]+1)-7<0 $ $ \Rightarrow 2{{[P]}^{2}}-8>0,{{[P]}^{2}}>4 $

…… (2) From (1) & (2), $ 4<{{[P]}^{2}}<8, $ which is not possible
$ \therefore $ For no values of -P- the point will be within the region.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें