Conic Sections Question 213

Question: The line $ y=mx+c $ intersects the circle $ x^{2}+y^{2}=r^{2} $ at the two real distinct points if

Options:

A) $ -r\sqrt{1+m^{2}}<c<r\sqrt{1+m^{2}} $

B) $ -r<c<r $

C) $ -r\sqrt{1-m^{2}}<c<r\sqrt{1+m^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given line is $ y=mx+c $

  • (1) and the given circle is $ x^{2}+y^{2}=r^{2} $ - (2) Solving (1) and (2), we get $ (1+m^{2})x^{2}+2mcx+c^{2}-r^{2}=0 $

…… (3) For two real distinct points of intersection, both the roots of (3) must be real distinct.
$ \therefore 4m^{2}c^{2}-4(1+m^{2})(c^{2}-r^{2})>0 $
$ \Rightarrow c^{2}<r^{2}(1+m^{2})\Rightarrow $

$ -r\sqrt{1+m^{2}}<c<\sqrt{1+m^{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें