Conic Sections Question 214

Question: The equation of the image of circle $ x^{2}+y^{2}+16x-24y+183=0 $ by the line mirror $ 4x+7y+13=0 $ is

Options:

A) $ x^{2}+y^{2}+32x-4y+235=0 $

B) $ x^{2}+y^{2}+32x+4y-235=0 $

C) $ x^{2}+y^{2}+32x-4y-235=0 $

D) $ x^{2}+y^{2}+32x+4y+235=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The centre of the given circle is $ (-8,12) $ and radius is 5. The image of the circle will have the same radius, i.e. the radius of the required circle is 5. The centre D of the required circle is the image of the centre C of the given circle in the line mirror. If D be $ (\alpha ,\beta ) $ then $ \frac{\alpha +8}{4}=\frac{\beta -12}{7}=-2[ \frac{4\times -8+7\times 12+13}{4^{2}+7^{2}} ] $ [See straight line] Or, $ \frac{\alpha +8}{4}=\frac{\beta -12}{7}=\frac{-2\times 65}{65}=-2 $
$ \therefore \alpha =-16,\beta =-2 $
$ \therefore $ Required circle is $ {{(x+16)}^{2}}+{{(y+2)}^{2}}=5^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें