Conic Sections Question 215

Question: Tangents at any point on the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ cut the axes at A and B respectively. If the rectangle OAPB (where O is the origin)is completed, then locus of point P is given by :

Options:

A) $ \frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1 $

B) $ \frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=1 $

C) $ \frac{a^{2}}{y^{2}}-\frac{b^{2}}{x^{2}}=1 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Eq. of the tangent at the point $ ‘\theta ’ $ is $ \frac{x\sec \theta }{a}-\frac{y\tan \theta }{b}=1 $

$ \Rightarrow $ A is $ (acos\theta ,0) $ and B is $ (0,-bcot\theta ) $ Let P be $ (h,k)\Rightarrow h=acos\theta ,k=-bcot\theta $

$ \Rightarrow \frac{k}{h}=-\frac{b}{a\sin \theta }\Rightarrow \sin \theta =\frac{bh}{ak} $ and $ \cos \theta =\frac{h}{a}. $ Square and add,

$ \Rightarrow \frac{b^{2}h^{2}}{a^{2}k^{2}}+\frac{h^{2}}{a^{2}}=1\Rightarrow \frac{b^{2}}{k^{2}}+1=\frac{a^{2}}{h^{2}} $

$ \Rightarrow \frac{a^{2}}{h^{2}}-\frac{b^{2}}{k^{2}}=1 $

Hence, locus of P is $ \frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें