Conic Sections Question 218

Question: Let $ S_1,S_2 $ be the foci of the ellipse $ \frac{x^{2}}{16}+\frac{y^{2}}{8}=1. $ If $ A(x+y) $ is any point on the ellipse, then the maximum area of the triangle $ AS_1S_2 $ (in square units) is

Options:

A) $ 2\sqrt{2} $

B) $ 2\sqrt{3} $

C) 8

D) 4

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Equation of ellipse is $ \frac{x^{2}}{16}+\frac{y^{2}}{8}=1 $ Where, $ a=4,b=2\sqrt{2} $ Eccentricity, $ e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{8}{16}}=\frac{1}{\sqrt{2}} $ Area is maximum when vertex is (0, b)
$ \therefore $ Maximum area $ =\frac{1}{2}\times 2ae\times b $

$ =\frac{1}{2}\times 2\times 4\times 2\sqrt{2}\times \frac{1}{\sqrt{2}}=8 $ sq. units



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें