Conic Sections Question 221

Question: Four distinct points $ (2k,3k),(1,0),(0,1) $ and $ (0,0) $ lie on a circle for

Options:

A) Only one value of k

B) $ 0<k<1 $

C) $ k<0 $

D) All integral values of k

Show Answer

Answer:

Correct Answer: A

Solution:

[a] The equation of the circle through (1, 0), (0, 1) and (0, 0) is $ x^{2}+y^{2}-x-y=0 $ it passes through $ (2k,3k) $ So, $ 4k^{2}+9k^{2}-2k-3k=0 $ or $ 13k^{2}-5k=0 $
$ \Rightarrow k(13k-5)=0\Rightarrow k=0 $ or $ k=\frac{5}{13} $ But $ k\ne 0 $ [ $ \because $ all the four points are distinct]
$ \therefore k=\frac{5}{13}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें