Conic Sections Question 222

Question: A hyperbola having the transverse axis of length $ 2\sin \theta , $ is confocal with the ellipse $ 3x^{2}+4y^{2}=12. $ Then its equation is

Options:

A) $ x^{2}\cos ec^{2}\theta -y^{2}{{\sec }^{2}}\theta =1 $

B) $ x^{2}{{\sec }^{2}}\theta -y^{2}\cos ec^{2}\theta =1 $

C) $ x^{2}{{\sin }^{2}}\theta -y^{2}{{\cos }^{2}}\theta =1 $

D) $ x^{2}{{\cos }^{2}}\theta -y^{2}{{\sin }^{2}}\theta =1 $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Equation of the ellipse is $ 3x^{2}+4y^{2}=12 $

$ \Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{3}=1 $

…… (1) Eccentricity $ e_1=\sqrt{1-\frac{3}{4}}=\frac{1}{2} $ So, the foci of ellipse are $ (1,0) $ and $ (-1,0) $ Let the equation of the required hyperbola be $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $

…… (2) Given $ 2a=2\sin \theta \Rightarrow a=\sin \theta $ Since the ellipse (1) and the hyperbola (2) are confocal, so. The foci of hyperbola are $ (1,0) $ and $ (-1,0) $ too. It the eccentricity, of hyperbola be $ e_2 $ then $ ae_2=1\Rightarrow \sin \theta e_2=1\Rightarrow e_2=\cos ec{{\theta }^{2}} $

$ \therefore b^{2}=a^{2}(e^2_2-1)=sin^{2}\theta (cosec^{2}\theta -1)=cos^{2}\theta $

$ \therefore $ Required equation of the hyperbola is $ \frac{x^{2}}{{{\sin }^{2}}\theta }-\frac{y^{2}}{{{\cos }^{2}}\theta }=1\Rightarrow x^{2}\cos ec^{2}\theta -y^{2}{{\sec }^{2}}\theta =1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें