Conic Sections Question 227

Question: The value of m, for which the line $ y=mx+\frac{25\sqrt{3}}{3} $ is a normal to the conic $ \frac{x^{2}}{16}-\frac{y^{2}}{9}=1, $ is

Options:

A) $ -\frac{2}{\sqrt{3}} $

B) $ \sqrt{3} $

C) $ -\frac{\sqrt{3}}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] The equation of normal to the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ in terms of slope -m- is $ y=mx\pm \frac{m(a^{2}+b^{2})}{\sqrt{a^{2}-b^{2}m^{2}}}; $ Given line $ y=mx+\frac{25\sqrt{3}}{3} $ and coin $ \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 $ which is hyperbola with $ a^{2}=16,b^{2}=9 $ By comparing given line with equation of normal we get $ \pm \frac{m(a^{2}+b^{2})}{\sqrt{a^{2}-b^{2}m^{2}}}=+\frac{25\sqrt{3}}{3} $

$ \Rightarrow \frac{m(16+9)}{\sqrt{16-9m^{2}}}=-\frac{25\sqrt{3}}{3} $

$ \Rightarrow \frac{25m}{\sqrt{16-9m^{2}}}=-\frac{25\sqrt{3}}{3} $

$ \Rightarrow 9m^{2}=3(16-9m^{2})\Rightarrow m^{2}=\frac{16}{12}=\frac{4}{3} $

$ \Rightarrow m=\pm \frac{2}{\sqrt{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें