Conic Sections Question 228

Question: In the given figure, the equation of the larger circle is $ x^{2}+y^{2}+4y-5=0 $ and the distance between centres is 4. Then the equation of smaller circle is

Options:

A) $ {{(x-\sqrt{7})}^{2}}+{{(y-1)}^{2}}=1 $

B) $ {{(x+\sqrt{7})}^{2}}+{{(y-1)}^{2}}=1 $

C) $ x^{2}+y^{2}=2\sqrt{7}x+2y $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] We have $ x^{2}+y^{2}+4y-5=0 $ , Its centre is $ C_1(0,-2), $ $ r_1=\sqrt{4+5}=3. $ Let $ C_2(h,k) $ be the centre of the smaller circle and its radius $ r_2. $ Then $ C_1C_2=4. $

$ \Rightarrow \sqrt{h^{2}+{{(k+2)}^{2}}}=3+r_2=4 $

…… (1)

$ \Rightarrow r_2=1 $ But $ k=r_2=1 $ [it touches x-axis]

$ \therefore $ From eq. (1), $ 4=\sqrt{h^{2}+{{(1+2)}^{2}}} $

$ \Rightarrow 16=h^{2}+9\Rightarrow h^{2}=7\Rightarrow h=\pm \sqrt{7} $ Since $ h>0\therefore h=\sqrt{7} $

Hence, required circle is $ {{(x-\sqrt{7})}^{2}}+{{(y-1)}^{2}}=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें