Conic Sections Question 229

Question: The angle of intersection of the circles $ x^{2}+y^{2}=4 $ and $ x^{2}+y^{2}=2x+2y $ is

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{6} $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Equations of the circles are $ x^{2}+y^{2}=4 $

…… (1) and $ x^{2}+y^{2}=2x+2y $

…… (2) Centre of (1) is $ C_1\equiv (0,0) $ ; Radius of (1) $ =r_1=2; $ Centre of (2) is $ C_2\equiv (1,1); $ Radius of (2) $ =r_2=\sqrt{2} $

$ d= $ distance between centres $ =C_1C_2=\sqrt{1+1}=\sqrt{2} $ If $ \theta $ is the angle of intersection of two circles, then $ \cos \theta =\frac{r^2_1+r^2_2-d^{2}}{2r_1r_2}=\frac{{{(2)}^{2}}+{{(\sqrt{2})}^{2}}-{{(\sqrt{2})}^{2}}}{2.2.\sqrt{2}}=\frac{1}{\sqrt{2}} $
$ \therefore \theta =\frac{\pi }{4} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें