Conic Sections Question 230

Question: The hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ passes through the point $ (3\sqrt{5},1) $ and the length of its laths rectum is $ \frac{4}{3} $ units. The length of the conjugate axis is

Options:

A) 2 units

B) 3 units

C) 4 units

D) 5 units

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ Hyperbola passes through $ (3\sqrt{5},1) $

$ \therefore \frac{{{(3\sqrt{5})}^{2}}}{a^{2}}-\frac{1}{b^{2}}=1 $ $ \frac{45}{a^{2}}-\frac{1}{b^{2}}=1 $

…… (i) Now length of latus rectum $ =\frac{2b^{2}}{a} $

$ \Rightarrow \frac{4}{3}=\frac{2b^{2}}{a} $

$ \Rightarrow \frac{2}{3}=\frac{b^{2}}{a}\Rightarrow a=\frac{3b^{2}}{2} $

…… (ii) Putting the value of -a- for equation (ii) in equation (i),

$ \Rightarrow \frac{45\times 4}{9b^{2}}-\frac{1}{b^{2}}=1\Rightarrow \frac{20}{b^{4}}-\frac{1}{b^{2}}=1 $ $ 20-b^{2}=b^{4} $ $ b^{4}+b^{2}-20=0 $ $ b^{4}+5b^{2}-4b^{2}-20=0 $ $ b^{2}(b^{2}+5)-4(b^{2}+5)=0 $ $ (b^{2}-4)(b^{2}+5)=0 $ $ b^{2}=4,b^{2}=-5 $

$ \therefore b^{2}=4\Rightarrow b=2 $ Now length of conjugate axis $ =2b=2(2)=4 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें