Conic Sections Question 231

Question: A line is drawn through a fixed point $ P(\alpha ,\beta ) $ to cut the circle $ x^{2}+y^{2}=a^{2} $ at A and B, then PA.PB is equal to

Options:

A) $ {{\alpha }^{2}}+{{\beta }^{2}} $

B) $ {{\alpha }^{2}}+{{\beta }^{2}}-{{\alpha }^{2}} $

C) $ {{\alpha }^{2}} $

D) $ {{\alpha }^{2}}+{{\beta }^{2}}+{{\alpha }^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Any point on the line at a distance at a r from the point $ P(\alpha ,\beta ) $ is $ (\alpha +rcos\theta ,\beta +rsin\theta ) $ If this point lies on $ x^{2}+y^{2}=a^{2}, $ then $ {{\alpha }^{2}}+r^{2}{{\cos }^{2}}\theta +2ar\cos \theta +{{\beta }^{2}}+r^{2}{{\sin }^{2}}\theta +2\beta r\sin \theta =a^{2} $
$ \Rightarrow r^{2}+2r(\alpha cos\theta +\beta sin\theta )+{{\alpha }^{2}}+{{\beta }^{2}}=a^{2} $
$ \Rightarrow r^{2}+2r(\alpha cos\theta +\beta sin\theta )+{{\alpha }^{2}}+{{\beta }^{2}}-a^{2}=0 $ Nor, if $ PA=r_1 $ and $ PB=r_2, $ then $ r_1 $ and $ r_2 $ must be roots of this equation.
$ \therefore PA.PB=r_1.r_2={{\alpha }^{2}}+{{\beta }^{2}}-c^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें