Conic Sections Question 232
Question: If the line $ x+y=1 $ is a tangent to a circle with centre (2, 3), then its equation is
Options:
A) $ x^{2}+y^{2}+2x+2y+5=0 $
B) $ x^{2}+y^{2}-4x-6y+5=0 $
C) $ x^{2}+y^{2}-x-y+3=0 $
D) $ x^{2}+y^{2}+5x+2y=0 $
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Radius of the circle = Perpendicular Distance of (2, 3) from $ x+y=1 $ is $ \frac{4}{\sqrt{2}}=2\sqrt{2} $
$ \therefore $ The required equation will be $ {{(x-2)}^{2}}+{{(y-3)}^{2}}=8\Rightarrow x^{2}+y^{2}-4x-6y+5=0 $