Conic Sections Question 235

Question: The angle of intersection of ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ and circle $ x^{2}+y^{2}=ab $ , is

Options:

A) $ {{\tan }^{-1}}( \frac{a-b}{ab} ) $

B) $ {{\tan }^{-1}}( \frac{a+b}{ab} ) $

C) $ {{\tan }^{-1}}( \frac{a+b}{\sqrt{ab}} ) $

D) $ {{\tan }^{-1}}( \frac{a-b}{\sqrt{ab}} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{ab-y^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ or $ y^{2}( \frac{a^{2}-b^{2}}{a^{2}b^{2}} )=\frac{a-b}{a} $

or $ y^{2}=( \frac{ab^{2}}{a+b} ) $ and $ x^{2}=( \frac{a^{2}b}{a+b} )\Rightarrow (x,y)=( a\sqrt{\frac{b}{a+b}},b\sqrt{\frac{a}{a+b}} ) $

Slope of tangent at ellipse $ =\frac{-b^{2}x}{a^{2}y}=\frac{-b^{2}}{a^{2}}\sqrt{\frac{a}{b}} $

Slope of tangent at circle $ =-\frac{x}{y}=-\sqrt{\frac{a}{b}} $

$ \therefore \theta ={{\tan }^{-1}}[ \frac{-\sqrt{\frac{a}{b}}+\frac{b^{2}}{a^{2}}\sqrt{\frac{a}{b}}}{1+\frac{b^{2}}{a^{2}}.\frac{a}{b}} ] $ i.e., $ \theta ={{\tan }^{-1}}[ \frac{a-b}{\sqrt{ab}} ] $ . Note : Students should remember this question as a formula.