Conic Sections Question 236

Question: If AB is a double ordinate of the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ such that $ \Delta OAB $ is an equilateral triangle O being the origin, then the eccentricity of the hyperbola satisfies.

Options:

A) $ e>\sqrt{3} $

B) $ 1<e<\frac{2}{\sqrt{3}} $

C) $ e=\frac{2}{\sqrt{3}} $

D) $ e>\frac{2}{\sqrt{3}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let the length of the double ordinate be $ 2\ell . $

$ \therefore AB=2\ell $ and $ AM=BM=\ell $ Clearly ordinate of point A is $ \ell $ . The abscissa of the point A is given by $ \frac{x^{2}}{a^{2}}-\frac{{{\ell }^{2}}}{b^{2}}=1\Rightarrow x=\frac{a\sqrt{b^{2}+{{\ell }^{2}}}}{b} $

$ \therefore $ A is $ ( \frac{a\sqrt{b^{2}+{{\ell }^{2}}}}{b},\ell ) $ Since $ \Delta OAB $ is equilateral triangle, therefore $ OA=AB=OB=2\ell . $ Also, $ OM^{2}+AM^{2}=OA^{2} $

$ \therefore \frac{a^{2}(b^{2}+{{\ell }^{2}})}{b^{2}}+{{\ell }^{2}}=4{{\ell }^{2}} $ We get $ {{\ell }^{2}}=\frac{a^{2}b^{2}}{3b^{2}-a^{2}} $ Since $ {{\ell }^{2}}>0\therefore \frac{a^{2}b^{2}}{3b^{2}-a^{2}}>0\Rightarrow 3b^{2}-a^{2}>0 $

$ \Rightarrow 3a^{2}(e^{2}-1)-a^{2}>0\Rightarrow e>\frac{2}{\sqrt{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें