Conic Sections Question 237

Question: The length of the chord intercepted by the circle $ x^{2}+y^{2}=r^{2} $ on the line $ \frac{x}{a}+\frac{y}{b}=1 $ is

Options:

A) $ \sqrt{\frac{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}{a^{2}+b^{2}}} $

B) $ 2\sqrt{\frac{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}{a^{2}+b^{2}}} $

C) $ 2\frac{\sqrt{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}}{a^{2}+b^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Length of chord $ =2{{{{{(radius)}^{2}}-{{(lengthof\bot fromcentreofchord)}^{2}}}}^{1/2}} $

$ =2{{{ r^{2}-{{( \frac{-1}{\sqrt{(1/a^{2})+(1/b^{2})}} )}^{2}} }}^{1/2}} $

$ =2\sqrt{\frac{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}{a^{2}+b^{2}}} $