Conic Sections Question 237
Question: The length of the chord intercepted by the circle $ x^{2}+y^{2}=r^{2} $ on the line $ \frac{x}{a}+\frac{y}{b}=1 $ is
Options:
A) $ \sqrt{\frac{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}{a^{2}+b^{2}}} $
B) $ 2\sqrt{\frac{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}{a^{2}+b^{2}}} $
C) $ 2\frac{\sqrt{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}}{a^{2}+b^{2}} $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Length of chord $ =2{{{{{(radius)}^{2}}-{{(lengthof\bot fromcentreofchord)}^{2}}}}^{1/2}} $
$ =2{{{ r^{2}-{{( \frac{-1}{\sqrt{(1/a^{2})+(1/b^{2})}} )}^{2}} }}^{1/2}} $
$ =2\sqrt{\frac{r^{2}(a^{2}+b^{2})-a^{2}b^{2}}{a^{2}+b^{2}}} $