Conic Sections Question 238

Question: Area of the equilateral triangle inscribed in the circle $ x^{2}+y^{2}-7x+9y+5=0 $ is

Options:

A) $ \frac{155}{8}\sqrt{3} $ square units

B) $ \frac{165}{8}\sqrt{3} $ square units

C) $ \frac{175}{8}\sqrt{3} $ square units

D) $ \frac{165}{8}\sqrt{3} $ square units

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given circle : $ x^{2}+y^{2}-7x+9y+5=0 $

$ \therefore $ Centre $ =( \frac{7}{2},\frac{-9}{2} ) $ Radius $ =\sqrt{\frac{49}{4}+\frac{81}{4}-5}=\frac{\sqrt{110}}{2} $ Since $ \Delta ABC $ is an equilateral

$ \therefore \angle MAL=30{}^\circ ,\angle MLA=90{}^\circ $ Also $ MA=\frac{\sqrt{110}}{2} $

$ \therefore AL=MA\cos 30{}^\circ =\frac{\sqrt{110}}{2}\times \frac{\sqrt{3}}{2}=\frac{\sqrt{330}}{4} $

$ \therefore $ Side of $ \Delta =2.AL=\frac{\sqrt{330}}{2} $ Area of equilateral $ \Delta =\frac{\sqrt{3}}{4}a^{2}=\frac{\sqrt{3}}{4}\times \frac{330}{4} $ $ =\frac{165}{8}\sqrt{3} $ sq. units



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें