Conic Sections Question 245
Question: The line $ y=mx+c $ touches the curve $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ , if
[Kerala (Engg.) 2002]
Options:
A) $ c^{2}=a^{2}m^{2}+b^{2} $
B) $ c^{2}=a^{2}m^{2}-b^{2} $
C) $ c^{2}=b^{2}m^{2}-a^{2} $
D) $ a^{2}=b^{2}m^{2}+c^{2} $
Show Answer
Answer:
Correct Answer: B
Solution:
$ y=mx+c $ touches the curve $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ , if $ c^{2}=a^{2}m^{2}-b^{2}. $