Conic Sections Question 249

Question: A tangent to the parabola $ y^{2}=8x, $ which makes an angle of $ 45{}^\circ $ with the straight line $ y=3x+5 $ is

Options:

A) $ 2x-y+1=0 $

B) $ 2x+y+1=0 $

C) $ x-2y+8=0 $

D) Both &

Show Answer

Answer:

Correct Answer: D

Solution:

[d] We know the tangent to the parabola $ y^{2}=4ax $ at $ (at^{2},2at) $ is $ ty=x+at^{2}. $ Here $ a=2 $ so, the tangent at $ (2t^{2},4t) $ to the parabola $ y^{2}=8x $ is $ ty=x+2t^{2} $

…… (i) -m- of (i) is $ \frac{1}{t}; $ (i) makes $ 45{}^\circ $ with $ y=3x+5 $ if $ \tan 45{}^\circ =| \frac{\frac{1}{t}-3}{1+\frac{1}{t}.3} |=| \frac{1-3t}{t+3} | $

$ \therefore 1=| \frac{1-3t}{t+3} |; $ Or $ \frac{1-3t}{t+3}=\pm 1; $ or $ 1-3t=t+3,-t-3 $

$ \therefore 4t=-2 $ Or $ 2t=4. $
$ \therefore t=-\frac{1}{2}or2 $ Putting in (i), the tangents have the equations $ -\frac{1}{2}y=x+2.\frac{1}{4}i.e.,2x+y+1=0 $ and $ 2y=x+2.i.e.,x-2y+8=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें