Conic Sections Question 250

Question: Equation of the latus rectum of the hyperbola $ {{(10x-5)}^{2}}+{{(10y-2)}^{2}}=9{{(3x+4y-7)}^{2}} $ is

Options:

A) $ y-\frac{1}{5}=-\frac{3}{4}( x-\frac{1}{2} ) $

B) $ x-\frac{1}{5}=-\frac{3}{4}( y-\frac{1}{2} ) $

C) $ y+\frac{1}{5}=-\frac{3}{4}( x+\frac{1}{2} ) $

D) $ x+\frac{1}{5}=-\frac{3}{4}( y+\frac{1}{2} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given, hyperbola is $ {{(10x-5)}^{2}}+{{(10y-2)}^{2}}=9{{(3x+4y-7)}^{2}} $
$ \Rightarrow {{( x-\frac{1}{2} )}^{2}}+{{( y-\frac{1}{5} )}^{2}}=\frac{9}{4}{{( \frac{3x+4y-7}{5} )}^{2}} $
$ \Rightarrow $ Given curve is a hyperbola where focus is $ ( \frac{1}{2},\frac{1}{5} ) $ and directrix is $ 3x+4y-7=0. $ Latus Rectum is a line passing through the focus and parallel to the directrix.
$ \Rightarrow $ Eq. of the latus rectum is $ y-\frac{1}{5}=-\frac{3}{4}( x-\frac{1}{2} ). $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें