Conic Sections Question 251

Question: The line passing through the extremity A of the major axis and the extremity B of the minor axis of the ellipse $ x^{2}+9y^{2}=9 $ meets its auxiliary circle at the point M. Then the area of the triangle with vertices A, M. and the origin O is

Options:

A) $ \frac{31}{10} $

B) $ \frac{29}{10} $

C) $ \frac{21}{10} $

D) $ \frac{27}{10} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Equation of the ellipse is $ \frac{x^{2}}{9}+\frac{y^{2}}{1}=1 $ An end of the major axis A be say (3, 0) and an end of the minor axis B be say (0,1). Equations of AB is therefore. $ \frac{x}{3}+\frac{y}{1}=1 $

  • (1) Equation of the auxiliary circle is $ x^{2}+y^{2}=9 $
  • (2) Solving the equation (1) and (2) we get $ x^{2}+{{( 1-\frac{x}{3} )}^{2}}=9\Rightarrow x^{2}+1+\frac{x^{2}}{9}-\frac{2x}{3}=9 $

$ \Rightarrow 5x^{2}-3x-36=0\Rightarrow (5x+12)(x-3)=0 $

$ \therefore x=-\frac{12}{5}\Rightarrow y=1-\frac{1}{3}( -\frac{12}{5} )=\frac{9}{5} $

$ \therefore $ Coordinates of M are $ ( -\frac{12}{5},\frac{9}{5} ) $ area of $ \Delta AOM=\frac{1}{2}.OA.MN=\frac{1}{2}\times 3\times \frac{9}{5}=\frac{27}{10} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें