Conic Sections Question 253

Question: If the line $ x\cos \alpha +y\sin \alpha =p $ be normal to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ , then

[MP PET 2001]

Options:

A) $ p^{2}(a^{2}{{\cos }^{2}}\alpha +b^{2}{{\sin }^{2}}\alpha )=a^{2}-b^{2} $

B) $ p^{2}(a^{2}{{\cos }^{2}}\alpha +b^{2}{{\sin }^{2}}\alpha )={{(a^{2}-b^{2})}^{2}} $

C) $ p^{2}(a^{2}{{\sec }^{2}}\alpha +b^{2}cose{c^{2}}\alpha )=a^{2}-b^{2} $

D) $ p^{2}(a^{2}{{\sec }^{2}}\alpha +b^{2}cose{c^{2}}\alpha )={{(a^{2}-b^{2})}^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

The equation of any normal to $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ is $ ax\sec \varphi -bycosec\varphi =a^{2}-b^{2} $ ……(i) The straight line $ x\cos \alpha +y\sin \alpha =p $ will be a normal to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $

If (i) and $ x\cos \alpha +y\sin \alpha =p $ represent the same line $ \frac{a\sec \varphi }{\cos \alpha }=\frac{-bcosec\varphi }{\sin \alpha }=\frac{a^{2}-b^{2}}{p} $

$ \Rightarrow \cos \varphi =\frac{ap}{(a^{2}-b^{2})\cos \alpha }, $

$ \sin \varphi =\frac{-bp}{(a^{2}-b^{2})\sin \alpha } $

$ \because $

$ {{\sin }^{2}}\varphi +{{\cos }^{2}}\varphi =1 $

$ \Rightarrow \frac{b^{2}p^{2}}{{{(a^{2}-b^{2})}^{2}}{{\sin }^{2}}\alpha }+\frac{a^{2}p^{2}}{{{(a^{2}-b^{2})}^{2}}{{\cos }^{2}}\alpha }=1 $

$ \Rightarrow $ $ p^{2}(b^{2}cose{c^{2}}\alpha +a^{2}{{\sec }^{2}}\alpha )={{(a^{2}-b^{2})}^{2}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें