Conic Sections Question 255

Question: The latus rectum of an ellipse is 10 and the minor axis is equal to the distance between the foci. The equation of the ellipse is

Options:

A) $ x^{2}+2y^{2}=100 $

B) $ x^{2}+\sqrt{2}y^{2}=10 $

C) $ x^{2}-2y^{2}=100 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ \frac{2b^{2}}{a}=10 $ and $ 2b=2ae $ Also $ b^{2}=a^{2}(1-e^{2}) $

therefore $ e^{2}=(1-e^{2}) $

therefore $ e=\frac{1}{\sqrt{2}} $

therefore $ b=\frac{a}{\sqrt{2}} $ or $ b=5\sqrt{2} $ , $ a=10 $

Hence equation of ellipse is $ \frac{x^{2}}{{{(10)}^{2}}}+\frac{y^{2}}{{{(5\sqrt{2})}^{2}}}=1 $ i.e., $ x^{2}+2y^{2}=100 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें