Conic Sections Question 257

Question: The equation of the hyperbola whose directrix is $ 2x+y=1 $ , focus (1, 1) and eccentricity $ =\sqrt{3} $ , is

Options:

A) $ 7x^{2}+12xy-2y^{2}-2x+4y-7=0 $

B) $ 11x^{2}+12xy+2y^{2}-10x-4y+1=0 $

C) $ 11x^{2}+12xy+2y^{2}-14x-14y+1=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ S(1,1) $ , directrix is $ 2x+y=1 $ and $ e=\sqrt{3} $ . Now let the various point be $ (h,k) $ , then accordingly $ \frac{\sqrt{{{(h-1)}^{2}}+{{(k-1)}^{2}}}}{\frac{2h+k-1}{\sqrt{5}}}=\sqrt{3} $ Squaring both the sides, we get $ 5[{{(h-1)}^{2}}+{{(k-1)}^{2}}]=3{{(2h+k-1)}^{2}} $ On simplification, the required locus is $ 7x^{2}+12xy-2y^{2}-2x+4y-7=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें