Conic Sections Question 265

Question: The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is:

Options:

A) $ \frac{4}{3} $

B) $ \frac{4}{\sqrt{3}} $

C) $ \frac{2}{\sqrt{3}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] The standard equation of hyperbola is $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ Latus rectum $ =\frac{2b^{2}}{a}, $ Conjugate axis $ =2b $ , Distance between the foci =2ae According to the question, $ \frac{2b^{2}}{a}=8 $

  • (i) $ 2b=\frac{1}{2}(2ae)\Rightarrow b=\frac{ae}{2} $

  • (ii) From (i) & (ii), $ \frac{2}{a}{{( \frac{ae}{2} )}^{2}}=8 $

$ \Rightarrow 2.\frac{a^{2}e^{2}}{4a}=8 $

$ \Rightarrow ae^{2}=16 $

  • (iii) From (i), $ b^{2}=4a $ Using $ b^{2}=a^{2}(e^{2}-1) $ we get $ (4a)=a^{2}(e^{2}-1)\Rightarrow 4=\frac{16}{e^{2}}(e^{2}-1) $

$ \Rightarrow 16-\frac{16}{e^{2}}=4\Rightarrow \frac{16}{e^{2}}=12\therefore e=\frac{2}{\sqrt{3}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें