Conic Sections Question 267

Question: If tangents are drawn to the parabola $ y^{2}=4ax $ at points whose abscissae are in the ratio $ m^{2}:1, $ then the locus of their point of intersection is the curve $ ( m>0 ) $

Options:

A) $ y^{2}={{({m^{1/2}}-{m^{-1/2}})}^{2}}ax $

B) $ y^{2}={{({m^{1/2}}+{m^{-1/2}})}^{2}}ax $

C) $ y^{2}={{({m^{1/2}}+{m^{-1/2}})}^{2}}x $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Consider two points $ P( at^2_1,2at_1 ) $ and $ Q( at^2_2,2at_2 ) $ on the parabola $ y^{2}=4ax $ Given: $ \frac{at^2_1}{at^2_2}=\frac{m^{2}}{1} $ or $ t_1=mt_2 $

  • (1) Let $ R(h,k) $ be the point of intersection of tangents at P and Q. Then, $ h=at_1t_2 $ and $ k=a(t_1+t_2) $

$ \Rightarrow h=amt^2_2 $ and $ k=a(mt_2+t_2) $ [Using (1)]

$ \Rightarrow t^2_2=\frac{h}{am} $ and $ t_2=\frac{k}{a(m+1)} $ Equating the two values of $ t_2, $ we get $ \frac{k^{2}}{a^{2}{{(m+1)}^{2}}}=\frac{h}{am} $

$ \Rightarrow k^{2}=ah\frac{{{(m+1)}^{2}}}{m}\Rightarrow k^{2}=ah{{( \sqrt{m}+\frac{1}{\sqrt{m}} )}^{2}} $

$ \therefore $ Required locus is $ y^{2}=ax({m^{\frac{1}{2}}}+{m^{\frac{1}{2}}}). $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें