Conic Sections Question 27
Question: If a point $ (x,\ y)\equiv (\tan \theta +\sin \theta ,\ \tan \theta -\sin \theta ) $ , then locus of (x, y) is
[EAMCET 2002]
Options:
A) $ {{(x^{2}y)}^{2/3}}+{{(xy^{2})}^{2/3}}=1 $
B) $ x^{2}-y^{2}=4xy $
C) $ {{(x^{2}-y^{2})}^{2}}=16xy $
D) $ x^{2}-y^{2}=6xy $
Show Answer
Answer:
Correct Answer: C
Solution:
Trick: Put the value of (x, y) $ \equiv $ (tan $ \theta +\sin \theta ,\tan \theta -\sin \theta ) $ in option (c), which satisfies the equation.