Conic Sections Question 27

Question: If a point $ (x,\ y)\equiv (\tan \theta +\sin \theta ,\ \tan \theta -\sin \theta ) $ , then locus of (x, y) is

[EAMCET 2002]

Options:

A) $ {{(x^{2}y)}^{2/3}}+{{(xy^{2})}^{2/3}}=1 $

B) $ x^{2}-y^{2}=4xy $

C) $ {{(x^{2}-y^{2})}^{2}}=16xy $

D) $ x^{2}-y^{2}=6xy $

Show Answer

Answer:

Correct Answer: C

Solution:

Trick: Put the value of (x, y) $ \equiv $ (tan $ \theta +\sin \theta ,\tan \theta -\sin \theta ) $ in option (c), which satisfies the equation.