Conic Sections Question 272

Question: If a variable point P on an ellipse of eccentricity e lines joining the foci $ S_1 $ and $ S_2 $ then the in centre of the triangle $ PS_1S_2 $ lies on

Options:

A) The major axis of the ellipse

B) The circle with radius e

C) Another ellipse of eccentricity $ \sqrt{\frac{3+e^{2}}{4}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let the ellipse be $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $

…… (1) Then $ e^{2}=1-\frac{b^{2}}{a^{2}} $

…… (2) Let a point P on (1) be $ (acos\theta ,b\sin \theta ). $ The coordinates of foci are $ S_1(ae,0) $ and $ S_2(-ae,0). $

Hence, $ S_1P=a(1-ecos\theta ) $ $ S_2P=a(1+ecos\theta ) $ and $ S_1S_2=2ae $ If $ (h,k) $ be the coordinates of in centre then $ h=\frac{2ae\times a\cos \theta +a(1-ecos\theta )\times -ae+a(1+ecos\theta )\times ae}{2ae+a(1-ecos\theta )+a(1+ecos\theta )} $

$ =\frac{2ae\cos \theta }{1+e} $

  • (3) $ k=\frac{be\sin \theta }{1+e} $

…… (4) Squaring and adding (3) & (4) we have. $ \frac{h^{2}}{4a^{2}}+\frac{k^{2}}{{b^{^{2}}}}={{( \frac{e}{1+e} )}^{2}} $

$ \therefore $ The locus of the point $ (h,k) $ is $ \frac{x^{2}}{4a^{2}{{\lambda }^{2}}}+\frac{y^{2}}{b^{2}{{\lambda }^{2}}}=1, $ where $ \lambda =\frac{e}{1+e} $ Which is another ellipse with eccentricity $ =\sqrt{1-\frac{b^{2}}{4a^{2}}}=\sqrt{\frac{3+e^{2}}{4}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें