Conic Sections Question 28

Question: If the two tangents drawn on hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ in such a way that the product of their gradients is $ c^{2} $ , then they intersects on the curve

Options:

A) $ y^{2}+b^{2}=c^{2}(x^{2}-a^{2}) $

B) $ y^{2}+b^{2}=c^{2}(x^{2}+a^{2}) $

C) $ ax^{2}+by^{2}=c^{2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ (h,k) $ be the point of intersection. By $ SS_1=T^{2} $ ,

$ ( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1 )( \frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}-1 )={{[ \frac{hx}{a^{2}}-\frac{ky}{b^{2}}-1 ]}^{2}} $

therefore $ x^{2}[ \frac{h^{2}}{a^{4}}-\frac{k^{2}}{a^{2}b^{2}}-\frac{1}{a^{2}}-\frac{h^{2}}{a^{4}} ]-y^{2}[ \frac{h^{2}}{a^{2}b^{2}}-\frac{k^{2}}{b^{4}}-\frac{1}{b^{2}}+\frac{k^{2}}{b^{4}} ]+…=0 $

We know that, $ m_1m_2=\frac{Coefficentofx^{2}}{Coefficentofy^{2}} $

$ \Rightarrow $ $ m_1m_2=\frac{\frac{k^{2}}{a^{2}b^{2}}+\frac{1}{a^{2}}}{\frac{h^{2}}{a^{2}b^{2}}-\frac{1}{b^{2}}}=c^{2} $

$ \Rightarrow $ $ ( \frac{k^{2}+b^{2}}{h^{2}-a^{2}} )=c^{2} $ or $ (y^{2}+b^{2})=c^{2}(x^{2}-a^{2}) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें