Conic Sections Question 286

Question: An ellipse has OB as semi minor axis, F and F- its foci and the angle FBF- is a right angle. Then the eccentricity of the ellipse is

Options:

A) $ \frac{1}{\sqrt{2}} $

B) $ \frac{1}{2} $

C) $ \frac{1}{4} $

D) $ \frac{1}{\sqrt{3}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \because \angle FBF’=90{}^\circ \Rightarrow FB^{2}+F’B^{2}=FF{{’}^{2}} $
$ \therefore {{( \sqrt{a^{2}e^{2}+b^{2}} )}^{2}}+{{( \sqrt{a^{2}e^{2}+b^{2}} )}^{2}}={{(2ae)}^{2}} $
$ \Rightarrow 2(a^{2}e^{2}+b^{2})=4a^{2}e^{2}\Rightarrow e^{2}=\frac{b^{2}}{a^{2}} $ …… (i) Also, $ e^{2}=1-b^{2}/a^{2}=1-e^{2} $ (By using equation (i))
$ \Rightarrow 2e^{2}=1\Rightarrow e=\frac{1}{\sqrt{2}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें