Conic Sections Question 293

Question: The value of $ \lambda $ , for which the line $ 2x-\frac{8}{3}\lambda y=-3 $ is a normal to the conic $ x^{2}+\frac{y^{2}}{4}=1 $ is

[MP PET 2004]

Options:

A) $ \frac{\sqrt{3}}{2} $

B) $ \frac{1}{2} $

C) $ -\frac{\sqrt{3}}{2} $

D) $ \frac{3}{8} $

Show Answer

Answer:

Correct Answer: D

Solution:

We know that the equation of the normal at point $ (a\cos \theta ,b\sin \theta ) $ on the curve $ x^{2}+\frac{y^{2}}{4}=1 $ is given by $ ax\sin \theta -by\text{cosec }\theta =a^{2}-b^{2} $ ……(i) Comparing equation (i) with $ 2x-\frac{8}{3}\lambda y=-3 $ . we get,

$ a\sin \theta =2 $ , $ b\text{ cosec}\theta =\frac{8}{3}\lambda $ or $ ab=\frac{16}{3}\lambda $ …..(ii) $ \because a=1,b=2 $ ;$ 2=\frac{16}{3}\lambda $ or $ \lambda =3/8 $