Conic Sections Question 294

Question: The equation of the tangent parallel to $ y-x+5=0 $ drawn to $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $ is

[UPSEAT 2004]

Options:

A) $ x-y-1=0 $

B) $ x-y+2=0 $

C) $ x+y-1=0 $

D) $ x+y+2=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Given hyperbola is, $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $ ……(i) Equation of tangent parallel to $ y-x+5=0 $ is $ y-x+\lambda =0 $
$ \Rightarrow $ $ y=x-\lambda $ ……(ii) If line (ii) is a tangent to hyperbola (i), then $ -\lambda =\pm \sqrt{3\times 1-2} $ (from $ c=\pm \sqrt{a^{2}m^{2}-b^{2}} $ ) $ -\lambda =\pm 1\Rightarrow \lambda =-1,+1 $ . Put the values of $ \lambda $ in (ii), we get $ x-y-1=0 $ and $ x-y+1=0 $ are the required tangents.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें