Conic Sections Question 298

Question: An equilateral triangle is inscribed in the circle $ x^{2}+y^{2}=a^{2} $ with one of the vertices at (a, 0). What is the equation of the side opposite to this vertex-

Options:

A) $ 2x-a=0 $

B) $ x+a=0 $

C) $ 2x+a=0 $

D) $ 3x-2a=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Since the equilateral triangle is inscribed in the circle with centre at the origin, the centroid coincides with the origin. So, $ \frac{AO}{OD}=\frac{2}{1} $ and $ OD=\frac{1}{2}AO=\frac{a}{2} $ So, the other vertices of the triangle have coordinates, $ ( -\frac{a}{2},\frac{\sqrt{3a}}{2} ) $ and $ [ -\frac{a}{2},-\frac{\sqrt{3}}{2}a ] $ $ ( -\frac{a}{2}\frac{\sqrt{3a}}{2} )y $ $ ( -\frac{a}{2},\frac{-\sqrt{3a}}{2} ) $

$ \therefore $ Equation of line BC is: $ x=-\frac{a}{2} $

$ \Rightarrow 2x+a=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें