Conic Sections Question 327

Question: Which one of the following is correct- The eccentricity of the conic $ \frac{x^{2}}{a^{2}+\lambda }+\frac{y^{2}}{b^{2}+\lambda }=1,(\lambda \ge 0) $

Options:

A) Increases with increase in $ \lambda $

B) Decreases with increase in $ \lambda $

C) Does not change with $ \lambda $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Equation of the given conic is an equation of ellipse $ \frac{x^{2}}{a^{2}+\lambda }+\frac{y^{2}}{b^{2}+\lambda }(x\ge 0) $
$ \Rightarrow A^{2}=a^{2}+\lambda $ and $ B^{2}=b^{2}+\lambda $ Eccentricity, $ e=\sqrt{1-\frac{B^{2}}{A^{2}}}=\sqrt{1-\frac{b^{2}+\lambda }{a^{2}+\lambda }} $

$ =\sqrt{\frac{a^{2}+\lambda -b^{2}-\lambda }{a^{2}+\lambda }} $

$ =\sqrt{\frac{a^{2}-b^{2}}{a^{2}+\lambda }} $

$ \lambda $ is in the denominator so, when $ \lambda $ increases, the eccentricity decreases.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें