Conic Sections Question 329
Question: Angle of intersection of the curves $ r=\sin \theta +\cos \theta $ and $ r=2\sin \theta $ is equal to
[UPSEAT 2004]
Options:
A) $ \frac{\pi }{2} $
B) $ \frac{\pi }{3} $
C) $ \frac{\pi }{4} $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
Here $ r=\sin \theta +\cos \theta $ and $ r=2\sin \theta $
$ \therefore $ $ 2\sin \theta =\sin \theta +\cos \theta \Rightarrow \sin \theta =\cos \theta $
$ \Rightarrow $ $ \tan \theta =1\Rightarrow \theta =\frac{\pi }{4} $ .