Conic Sections Question 329

Question: Angle of intersection of the curves $ r=\sin \theta +\cos \theta $ and $ r=2\sin \theta $ is equal to

[UPSEAT 2004]

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{4} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Here $ r=\sin \theta +\cos \theta $ and $ r=2\sin \theta $

$ \therefore $ $ 2\sin \theta =\sin \theta +\cos \theta \Rightarrow \sin \theta =\cos \theta $

$ \Rightarrow $ $ \tan \theta =1\Rightarrow \theta =\frac{\pi }{4} $ .