Conic Sections Question 344

Question: The condition that the straight line $ lx+my=n $ may be a normal to the hyperbola $ b^{2}x^{2}-a^{2}y^{2}=a^{2}b^{2} $ is given by

[MP PET 1993, 94]

Options:

A) $ \frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{{{(a^{2}+b^{2})}^{2}}}{n^{2}} $

B) $ \frac{l^{2}}{a^{2}}-\frac{m^{2}}{b^{2}}=\frac{{{(a^{2}+b^{2})}^{2}}}{n^{2}} $

C) $ \frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{{{(a^{2}-b^{2})}^{2}}}{n^{2}} $

D) $ \frac{l^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}=\frac{{{(a^{2}-b^{2})}^{2}}}{n^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Any normal to the hyperbola is $ \frac{ax}{\sec \theta }+\frac{by}{\tan \theta }=a^{2}+b^{2} $ ……(i) But it is given by $ lx+my-n=0 $ ……(ii) Comparing (i) and (ii), we get $ \sec \theta =\frac{a}{l}( \frac{-n}{a^{2}+b^{2}} ) $ and $ \tan \theta =\frac{b}{m}( \frac{-n}{a^{2}+b^{2}} ) $

Hence eliminating $ \theta $ , we get $ \frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{{{(a^{2}+b^{2})}^{2}}}{n^{2}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें