Conic Sections Question 345

Question: The equation $ y^{2}-x^{2}+2x-1=0 $ represents

[UPSEAT 2004]

Options:

A) A hyperbola

B) An ellipse

C) A pair of straight lines

D) A rectangular hyperbola

Show Answer

Answer:

Correct Answer: C

Solution:

Given equation is $ y^{2}-x^{2}+2x-1=0 $

Comparing the given equation with $ ax^{2}+2hxy+by^{2}+2gx+2fy+c=0 $

we get,

$ a=1 $ , $ h=0 $ , $ b=1 $ , $ g=1 $ , $ f=0 $ , $ c=-1 $

$ \therefore $ $ \Delta =abc+2fgh-af^{2}-bg^{2}-ch^{2} $

$ \Delta =1+0+0-1=0 $

Hence, the given equation represents two straight lines.