Conic Sections Question 347

Question: hThe equation of the ellipse whose latus rectum is 8 and whose eccentricity is $ \frac{1}{\sqrt{2}} $ , referred to the principal axes of coordinates, is

[MP PET 1993]

Options:

A) $ \frac{x^{2}}{18}+\frac{y^{2}}{32}=1 $

B) $ \frac{x^{2}}{8}+\frac{y^{2}}{9}=1 $

C) $ \frac{x^{2}}{64}+\frac{y^{2}}{32}=1 $

D) $ \frac{x^{2}}{16}+\frac{y^{2}}{24}=1 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{2b^{2}}{a}=8, $

$ e=\frac{1}{\sqrt{2}} $

therefore $ a^{2}=64,b^{2}=32 $

Hence required equation of ellipse is $ \frac{x^{2}}{64}+\frac{y^{2}}{32}=1 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index