Conic Sections Question 356

Question: The equation of a circle passing through the vertex and the extremities of the latus rectum of the parabola $ y^{2}=8x $ is

[MP PET 1998]

Options:

A) $ x^{2}+y^{2}+10x=0 $

B) $ x^{2}+y^{2}+10y=0 $

C) $ x^{2}+y^{2}-10x=0 $

D) $ x^{2}+y^{2}-5x=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

For parabola, $ y^{2}=8x $

therefore $ 4a=8 $

therefore $ a=2 $

vertex of $ y^{2}=8x,O\equiv (0,0) $

End points of latus-ractum $ L(a,2a);L’(a,-2a) $

therefore $ L(2,4);L’(2,-4) $

Circle passes through the point (0,0) (2,4) and (2,-4) Let equation of circle, $ x^{2}+y^{2}+2gx+2fy+c=0 $

After solving equation of circle, $ x^{2}+y^{2}-10x=0 $

Trick: option (c) satisfied by (2, 4) and (2,-4).